Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Fundamental Research ; 2(4):562-569, 2022.
Article in English | Web of Science | ID: covidwho-2122472

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, causing COVID-19, is the most challenging pandemic of the modern era. It has resulted in over 5 million deaths worldwide. To quickly explore therapeutics for COVID-19, we utilized a previously-established system, namely CEBIT. We performed a highthroughput screening of FDA-approved drugs to inhibit the interaction between the receptor-binding domain (RBD) of SARS-CoV-2 spike protein and its obligate receptor ACE2. This interaction is essential for viral entry and therefore represents a promising therapeutic target. Based on the recruitment of interacting molecules into phase-separated condensates as a readout, we identified six positive candidates from a library of 2572 compounds, most of which have been reported to inhibit the entry of SARS-CoV-2 into host cells. Our surface plasmon resonance (SPR) and molecular docking analyses revealed the possible mechanisms via which these compounds interfere with the interaction between RBD and ACE2. Hence, our results indicate that CEBIT is highly versatile for identifying drugs against SARS-CoV-2 entry, and targeting CoV-2 entry by small molecule drugs is a viable therapeutic option to treat COVID-19 in addition to commonly used monoclonal antibodies.

2.
Viruses ; 13(5)2021 05 10.
Article in English | MEDLINE | ID: covidwho-1290361

ABSTRACT

Since the first report of a new pneumonia disease in December 2019 (Wuhan, China) the WHO reported more than 148 million confirmed cases and 3.1 million losses globally up to now. The causative agent of COVID-19 (SARS-CoV-2) has spread worldwide, resulting in a pandemic of unprecedented magnitude. To date, several clinically safe and efficient vaccines (e.g., Pfizer-BioNTech, Moderna, Johnson & Johnson, and AstraZeneca COVID-19 vaccines) as well as drugs for emergency use have been approved. However, increasing numbers of SARS-Cov-2 variants make it imminent to identify an alternative way to treat SARS-CoV-2 infections. A well-known strategy to identify molecules with inhibitory potential against SARS-CoV-2 proteins is repurposing clinically developed drugs, e.g., antiparasitic drugs. The results described in this study demonstrated the inhibitory potential of quinacrine and suramin against SARS-CoV-2 main protease (3CLpro). Quinacrine and suramin molecules presented a competitive and noncompetitive inhibition mode, respectively, with IC50 values in the low micromolar range. Surface plasmon resonance (SPR) experiments demonstrated that quinacrine and suramin alone possessed a moderate or weak affinity with SARS-CoV-2 3CLpro but suramin binding increased quinacrine interaction by around a factor of eight. Using docking and molecular dynamics simulations, we identified a possible binding mode and the amino acids involved in these interactions. Our results suggested that suramin, in combination with quinacrine, showed promising synergistic efficacy to inhibit SARS-CoV-2 3CLpro. We suppose that the identification of effective, synergistic drug combinations could lead to the design of better treatments for the COVID-19 disease and repurposable drug candidates offer fast therapeutic breakthroughs, mainly in a pandemic moment.


Subject(s)
Coronavirus 3C Proteases/drug effects , Quinacrine/pharmacology , Suramin/pharmacology , Antiviral Agents/pharmacology , COVID-19 Vaccines/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Cysteine Endopeptidases/metabolism , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Protease Inhibitors/pharmacology , Quinacrine/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Suramin/metabolism , Viral Nonstructural Proteins , COVID-19 Drug Treatment
3.
Viruses ; 13(1)2021 Jan 17.
Article in English | MEDLINE | ID: covidwho-1060230

ABSTRACT

Quinacrine (Qx), a molecule used as an antimalarial, has shown anticancer, antiprion, and antiviral activity. The most relevant antiviral activities of Qx are related to its ability to raise pH in acidic organelles, diminishing viral enzymatic activity for viral cell entry, and its ability to bind to viral DNA and RNA. Moreover, Qx has been used as an immunomodulator in cutaneous lupus erythematosus and various rheumatological diseases, by inhibiting phospholipase A2 modulating the Th1/Th2 response. The aim of this study was to evaluate the potential antiviral effect of Qx against denominated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Vero E6 cells. The cytotoxicity of Qx in Vero E6 cells was determined by the MTT assay. Afterwards, Vero E6 cells were infected with SARS-CoV-2 at different multiplicities of infections (MOIs) of 0.1 and 0.01 in the presence of Qx (0-30 µM) to determinate the half maximal effective concentration (EC50). After 48 h, the effect of Qx against SARS-CoV-2 was assessed by viral cytotoxicity and viral copy numbers, the last were determined by digital real-time RT-PCR (ddRT-PCR). Additionally, electron and confocal microscopy of Vero E6 cells infected and treated with Qx was studied. Our data show that Qx reduces SARS-CoV-2 virus replication and virus cytotoxicity, apparently by inhibition of viral ensemble, as observed by ultrastructural images, suggesting that Qx could be a potential drug for further clinical studies against coronavirus disease 2019 (COVID-19) infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Quinacrine/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Cell Line , Chlorocebus aethiops , Microscopy, Electron, Transmission , Vero Cells , Viral Load/drug effects , Virus Internalization/drug effects
4.
Mol Neurobiol ; 58(1): 106-117, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-746880

ABSTRACT

The SARS-CoV-2 virus that is the cause of coronavirus disease 2019 (COVID-19) affects not only peripheral organs such as the lungs and blood vessels, but also the central nervous system (CNS)-as seen by effects on smell, taste, seizures, stroke, neuropathological findings and possibly, loss of control of respiration resulting in silent hypoxemia. COVID-19 induces an inflammatory response and, in severe cases, a cytokine storm that can damage the CNS. Antimalarials have unique properties that distinguish them from other anti-inflammatory drugs. (A) They are very lipophilic, which enhances their ability to cross the blood-brain barrier (BBB). Hence, they have the potential to act not only in the periphery but also in the CNS, and could be a useful addition to our limited armamentarium against the SARS-CoV-2 virus. (B) They are non-selective inhibitors of phospholipase A2 isoforms, including cytosolic phospholipase A2 (cPLA2). The latter is not only activated by cytokines but itself generates arachidonic acid, which is metabolized by cyclooxygenase (COX) to pro-inflammatory eicosanoids. Free radicals are produced in this process, which can lead to oxidative damage to the CNS. There are at least 4 ways that antimalarials could be useful in combating COVID-19. (1) They inhibit PLA2. (2) They are basic molecules capable of affecting the pH of lysosomes and inhibiting the activity of lysosomal enzymes. (3) They may affect the expression and Fe2+/H+ symporter activity of iron transporters such as divalent metal transporter 1 (DMT1), hence reducing iron accumulation in tissues and iron-catalysed free radical formation. (4) They could affect viral replication. The latter may be related to their effect on inhibition of PLA2 isoforms. Inhibition of cPLA2 impairs an early step of coronavirus replication in cell culture. In addition, a secretory PLA2 (sPLA2) isoform, PLA2G2D, has been shown to be essential for the lethality of SARS-CoV in mice. It is important to take note of what ongoing clinical trials on chloroquine and hydroxychloroquine can eventually tell us about the use of antimalarials and other anti-inflammatory agents, not only for the treatment of COVID-19, but also for neurovascular disorders such as stroke and vascular dementia.


Subject(s)
Antimalarials/therapeutic use , COVID-19 Drug Treatment , COVID-19/complications , Nervous System Diseases/drug therapy , Nervous System Diseases/etiology , SARS-CoV-2 , Animals , Antimalarials/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , COVID-19/metabolism , Humans , Nervous System Diseases/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL